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1 Introduction
1.1 A large deviation control problem

e Cost-minimizing problems

T
i%fE[/ f(X¢, he)dt]  (problem on finite time horizon)
0

11%f Thm — / f(X¢, he)dt]  (problem on infinite time horizon, ergodic control)
—oo T’
h = (ht)t>0 : control
X = X"= (X);>¢ :controlled diffusion process

are among the classical stochastic control problems (cf. Fleming & Soner).
e Corresponding to the above problems, we can consider the problem of maximizing
the probability

1 (T
P(—/ F(X, hy)dt < k)
T Jo
over a large time interval, for a given level k € R.
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This is a non-conventional stochastic control problem (The Dynamic Programming
Principle is not directly applicable).

e According to the idea of Large deviations (e.g. Gartner-Ellis theorem), we expect

that, if the limit

AO) = Tim = suplog Ele? Jo F(Xehe)dt (1)

T—o00 h

exists and some regulality properties hold for A(#), then the behaviour of the
maximized probability as T — oo is like

1

1 T
— gupl PC— Xghcu<k)z_. inf  I(k'),
T P8 T/O F( Xt he)dt < e 1)

where the “rate function” I(k) is given by the Legendre transform of A(6):

I(k) = sgp{k@ —A(0)}.



m Formal argument to obtain the upper bound:

1 1 g ,
Th_r}rloo 75U SuplogP /0 f( Xy, he)dt < k) < — k’e(lr—l{;o,k]ﬂk/)'

By Chebyshev's inequality, for any 6 € (—o0,0),
T
Bl S5 1 (Xehody E[GHIOT f(Xeshe)dt %/ F(X,, )t < k}
0

>69’€TP(l /Tf(X h)dt<k)
- T . ty 10t = )

and so

1 [t T
log P (f / f(X¢, he)dt < k) < log E[e? Jo J(Xuhdt] _ g,
0

Hence

1 1

T'— o0 T'— 00

= A(6) — Ok.
3

1 ! T
lim TsuplogP / f( Xy, hy)dt < k) < lim fsuplogE[ o0 Js f(Xt,ht)dt]
0

— Ok



Therefore

lim %sup logP / f(Xe, he)dt < k) inf {A(0) — 0k}.

T—o00 € (—o0,0)

Hence, if we define I(k) := sup {k0 — A(0)}, I(k) is non-increasing and
€ (—o0,0)

1 1 g

lim —SuplogP / f( Xy, hy)dt < k) < —I(k)

— inf  I(K").
wetien )



m The key to prove the lower bound:

1 1 [t
lim — suplogP(—/ f( X4, he)dt < k) > — inf  I(K').
Tl h T Jy k' €(—00,k]

e If A(0) convex (which is formally true) and C*, an explicit expression for I(k) is
possible for k£ € Range{A’(0) : 0 € (—00,0)}, as in the proof of Gartner-Ellis theorem.

e It is enough to show that

1 I . | :
lim TlogP(T/O f(Xt,ht)dt§k> >— inf I(K) (X=XM

T— o0 k' €(—o0,k]

for a suitable & (which may depend on k). How do we choose h and a measure
transformation?



1.2 Related studies in the context of math. finance
Upside chance maximization Pham (2003), Hata&Sekine (2005, 2010), etc.

Downside risk minimization Hata-Nagai-Sheu (2010), etc.

e An example of downside risk minimization problem:

(dSY = r(X,)Sdt,
Security prices: < . o mAr 5
dS; = Si{a(Xy)dt+ Y op(X)dW}}, i=1,...,m.
\ =1
Economic factors: dXj = 87 (X;)dt + Z N (X)dWE, j=1,....n

k=1

| th dS!

Wealth process: V; = Vy(h), — = ; h S



Then

Vr(h)
St

log = /OT {hf ((Xy) — r(Xe)1) — %\g*(Xt)htﬁ}dt + /OT hio(X:)dW;.

One tries to prove

, 1 1 Vr(h) : /
_ _ < — —
Jm, g nlon P (i lo ~g™ <) == inf | 1)
where
I(k) = sup {ky—x()},
A Vr(h)\7
K0 = Jim g inoe B (Sg) |

e \We are going to prove an analogous statement without using a specific structure of
financial market models.



1.3  Preliminaries

o (0, F,P;(Fit)tejo,00)): a filtered prob. space

® B = (B¢)tejo,00): a standard F;-Brownian motion in RY.

e \We consider the controlled SDE
dXy = o(Xy)dBy, + |B(Xy) + v(Xe)he] dt 2)
XO =z c R"
where the coefficients satisfy
(o(z) € CHR™;R™ x RY),
{ B(z) e CHR™R™), |VB(z)| <C,
() € CE(R™;R™ x R™).

We also assume
Jui,v9 >0, Va, & €R™, 1|€]? < oo*(x)€ - € < |l
e For each T € (0, 00), the totality of R*-valued F;-progressively measurable
processes (2¢)sefo, ] such that P(fOT |2 dt < oo) = 1 is denoted by L2[0,T*.
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e (Admissible controls) For each T' € (0,00) and = € R", we define

A(T, x) = {(ht)te[o,T] € L?[0, 7)™ | the solution X = (X¢);e0.1] of

the SDE (2) uniquely exists in L?[0, T]™ and does not explode in [O,T]}

e Cost functional:

f(x,h)=V(x)+ %S(w)h -h+g(x)-h
1 1

B Y(x> -357'9 9($Z+§S(“”) (h * 5_19(“”)) | (h * 5_19(37))

::l‘]r(:c)

V(z) € CYR"), [VV(2)] < C(|z] + 1),

S(z) € CE(R™;R™ x R™): symmetric and (strictly) positive definite for each
r € R"™,

g(x) € CHR™R"), |g(z)| < C(lz| +1).
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e Main assumption:

1
U(a) = Via) = 557 g(a) > evlaf — ¢

for some ¢y > 0 and ¢}; € R.
e For each T € (0,00), z € R™ and 6 € (—o0,0), define

J(T;z;0) := sup logEle’ Jo f(Xehe)dt) (3)
he A(T;x)

By the Dynamic Programming Principle, the function v(t,z) = J(T — t; x; ) should
formally satisfy the following HJB equation

[ G+ strloo®(2) D] + 3lo* () Vul* + B(z) - Vo + sup, {v(2)h - Vo + 0f(x,h)}

! =0 in[0,T) xR"
v=0 on{t=T}xR"

\
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In our setting, we can calculate sup{--- }, and the maximizer is
7 —1 1 *
h=-S (57 Vv+g).

The equation is rewritten as

{ % + %tr[aa*(w)Dzv] + %NQ(CIZ)V”U Vo+G(x) - Vo+0U(x)=0 in|0,T) xR"

v(T,-) =0 on{t=T} xR"
(4)
where |
Ny(z) == 00" (x) — gfyS_lfy*(x),
G(z) == B(z) — 7S~ g(x),
Ulz) = V(z) — %g*S_lg(x).
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1.4 Main result and outline of proof

e Thanks to the previous studies (by Bensoussan, Frehse, Nagai, Ichihara, Sheu), our
HJB equation (4) turns out to have a classical solution v(t,z) = v(t,x;T;60). By
performing some estimation for the solution, we can prove the verification theorem:

v(0,2;7T;0) = sup logE[eefoTﬂXt’ht)dt].

he A(x;T)
e Definition of A(f). Instead of defining A(6) as the limit
1 0 [T £(X¢,he)dt
lim sup log E[e” /o |

T—oo 1" e A(T:)
directly, we consider the ergodic-type HJB (EHJB) equation

A= %tr[aa*(m)DQw] + %Ng(aj)Vw Vw + G(z) - Vw + 0U (). (5)

The structure theorem (by Kaise, Sheu, Ichihara) for EHJB equations tells us that
there is a unique “bottom” solution (A*,w*(x)). We define A(0) := A™,
wy(x) := wy(x), and verify that

A(f) = lim 1 sup logE[eefon(Xt’ht)dt] (Vx € R™).



e Regularity of A(f). Through the analysis of the EHJB equation (5) w.r.t. €, we can
prove that A(6) and wg(z) are C* w.r.t. 6 and the derivatives A’(), w}, satisfy the
Poisson equation

A/(Q) = Lg’w,@ + Vi (x),
where ]
Lo = 5tr[aa*D?] + [G + NoVuwyg| - V,

1
Vo(x) := aNéng - Vwg(x) + U(x).
Theorem 1 (Main Theorem). (i) A(0) is a C*, convex function of 6 € (—o0,0).

(i) If k € (A (—o0), A'(0—)), the limit

(k) = lim % S logP(% /OT F(Xp, hy)dt < k:)
exists and
(k) = — kle(ir_{o’k] I(k") = —1(k).
where
I(k) .= ee(i_n;o){k@ —A(0)}.
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2 HJB equation and the verification theorem

2.1 Existence, uniqueness of solutions

Our HJB equation is

{ 9+ Ltrjoo* (2)D?v] + t Ny(2)Vo - Vo + G(z) - Vo +0U(z) =0 in [0,T) x R"
v(T,-) =0 on {t=T} x R".
(6)

Instead of (6) we first consider the Cauchy problem

% — %tr[aa*(x)D%] + %NQ(QZ‘)V’D Vo —G(z) - Vo+60U(x) =0 in (0,00) x R”
7 =0 on {t=0} xR"
(7)

(Afterwards, setting v(t,z;T) := —v(T — t,x), we obtain the solution of our HJB
equation (4).)
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The equation can be rewritten as

.
 — Strloo" (2)D%] — Gla) - Yo+ inf {~€- Vo + L(z, &)} =0,

where

L(x,€) = 5Ny ()€ - €~ 6U (a).

Theorem 2 (Nagai(1996), Bensoussan-Frehse-Nagai(1998), Ichihara-Sheu(2011)).
There exists a unique solution v(t,z) € C*?((0,00) x R™) N C([0,00) x R™) of (7)

such that inf inf o(t,z) > —oc for each T € (0,00). The solution admits a
0<t<T zE€R"

stochastic representation

T
H(T.2)= inf K / L(X,. &)dl] (8)
EEA(T ;) 0

where
dXt — O'(Xt)dBt —|— [G(Xt) - ft]dt, O S t S T, XO =T c Rn

e Uniqueness is a consequence of the stochastic representation (8).
e Existence follows from purely PDE theoretic arguments.
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2.2 Verification theorem

Theorem 3. For the solution of the HJB equation
v(t,x) =v(t,z;T) = —v(T —t,x), set

ﬁ@,mzv::a—s—l@g(%y*@gvmuﬁuzv-%g@o).

Let X = (X)o<¢<T be the solution of the s.d.e.

A A

{ dAXt = o(X,)dB; + [5()275) + W(Xt)il@a X)]dt
Xo =x e R"

Assume that

X is non-explosive on [0, T,
E[efoT[U*V’U(t,Xt)]*dBt—% fOT |0*V'U(t,Xt)|2dt] — 1

Then

(0, 2;T) = log E[e? Jo /(Xe:h(t.Xe)dty

= sup logFE[e’ Jo f(Xt’B(t’Xt)dt].
he A(T;x)

16
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2.3 Estimation of the solution

Lemma 2.1. The solution v(t,x) = v(t,x;T) of the HJB equation (4) satisfies

where

—K := inf —0U(x).
reR™

Moreover, for each (tg,xq) € [0,T] x R™, ¢ > 0 and p > 0, the following estimation
holds:

4(1+4c) s 0v
2
Volto, x0) + = (at(to,azo)JrK)

< C(HNHHQLoo(BP(a;O)) +IVNol[T e (B, (@0)) T IV 1o (B, (2o)) + BT (B, (z0))
VBl (8,01 + U118, @0 + VUl (5,001 + 1))

where C' > 0 is a positive constant depends only onn, ¢, p, K, v, V5 and
U1 = A(Np).
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Lemma 2.2. Let W; be an m-dimensional Fi-Brownian motion on a filtered probability space
(2, F,P;Ft) and T € (0,00). We consider the SDE

dX¢ = o(t, X¢)dWy + b(t, X)dt, 0<t<T, Xo =x € R™. (10)

Here we assume that the functions o : [0,T] X R™ — R™*™ and b : [0,T] x R™ — R™ are Borel
measurable and locally Lipschitz w.r.t. the spatial variable. Set

1
L:= %—f + §tr[aa* (t,x)D?] +b(t,x) - V

and let a: [0,T] x R™ — R™ be a Borel measurable function. Suppose that there exist a positive
function ¢» € CH2(]0,T] x R™) and a constant C' = C > 0 such that

e e fafs, ¥ {0 = 00 (11)
Lap < C, (12)

la® < Cp, (13)

0" V| < Cv, (14)

L +a- 0"V < Cp. (15)

Then, the SDE (10) has a unique non-explosive solution Xy on [0,T] and it satisfies

E{exp{/ot a* (s, Xs)dWs — % /Ot |a(s,Xs)|2ds}} —1 (16)

for all t € [0,T].
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3 Analysis of the EHJB equation (w.r.t. the parameter 6)

We consider the EHJB equation

1
A= %tr[aa*(:v)Dzw] + 5 No(@) V- Vu + G(a) - Vu +0U (), (17)
which is the equation for the problem
1 T
sup lim = log E[e? Jo [(Xvhadt) g e (_o 0), (18)
ph T'—o0 T
3.1 The structure of EHJB equations (Kaise & Sheu 2006)
1
A= %tr[a(:v)DQw] +oa() Vo Vu +b(r) Vw+ V(z) zeR"  (19)

Assumptions:

(ks1l) a¥, a¥, b*, V : sufficiently smooth
(ks2) a,a : uniformly positive definite
(ks3) I¥ € C?*(R") s.t.

1 1
§tr[a,D2\If] + i&V\If VU +b- VU +V — —c0 as |z| = oo.
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Set
A := {A € R : there exists a smooth function w satisfying (19) for A },
Lf := %tr[aDQf] +[b+aVw]-Vf, feC*R").
Theorem 4. (Kaise-Sheu (2006)) There is a number A* € R such that
A = [A*, +00),
and the following dichotomy holds:

A > A" — L s transient,
A = A" = L is ergodic (positive recurrent).

Moreover, the solution w corresponding to the bottom A* is unique up to additive
constants.
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e We define A(0),wy(z) as the “bottom” of our EHJB equation (5). The
corresponding operator

Lg = %tr[aa* (z)D?] + [G(x) + NyVwy| - V

is ergodic.
e A direct proof that Ly is ergodic is possible. By an argument based on a maximum
principle we can show that

wy(x) - —00 as |xr| = oo

Then —wy turns out to be a Lyapunov function of Ly.

3.2 Convergence of the solution of HJB equation

Theorem 5.
. v(0,z;T;0)
lim

T'— o0 T

— A(6)

e Ichihara & Sheu (2011) proved a stronger statement.
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3.3 Convexity of A(6)

By the verification theorem and the previous theorem we have

1 T
A(f) = lim — sup logE[e?Jo f(Xehe)dt)

T—oo 1° he A(T;x)

Convexity follows from this formula .

3.4 Differentiability of A(6)

Differentiating the EHJB equation w.r.t. 8 formally, we have

1 1
A(0) = itr[aa*DQw’] + NgVw - V' + 5 oVw - Vw+ G(x) - Vw' +U

1 1
= itr[aa*D2w’] + (G(x) + NgVw) - Vuw' + 5 sVw - Vw + U .

\ . 7

~"

=:Vp(x)
Hence we expect that the pair (A’(#),w’) is a solution of the Poisson equation

A,(H) = Low' + Vp (:E), (20)
22



where

1 1
Vo(x) = iNéng Vwg(x) +U(x) = ﬁfyS_lfy*ng - Vwg(z) + U(x).

Moreover, we can formally write
N @) = [ V()dua(a).
where g is the invariant distribution of Ly.

e These formal arguments are justified by the following result (which can be proved
using the ideas of Bensoussan).
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e \We consider an operator

1 2 - ) n
L = _trfa(x)D? + b(x) Za ij+;b(x)0i, reR

1,7=1

and a function f € C°°(R"™), satisfying the following assumptions:
(i) a¥(z), b*(x), i,7 =1,...,n, belong to C*°(R") and a(x) = [a¥ (x)];; is
uniformly nondegenerate:

v >0, Vz,& € R™, a¥ (x)&:&; > v|E)*.

(i) there exist a number Rq > 0, a function ) € C?(R™ ~ (0,00)), and a constant

c > 0 such that
li inf = 21
A ¢(@) = @)

Ly < -1 outside Bp,,

L) + iavw - Vi) <0 outside Bp,.

(iii) f satisfies sup,¢ e Jiszz()i) < 00.
0

Let m = m(dz) be the invariant distributiSE of L.




Theorem 6. The linear problem

(22)

—Lz=f in R™,
z € C°(R"), SUPze By, |Z(é))| < 00
is solvable if and only if

f(x)m(dx) = 0.

RTL

Furthermore, the function z that satisfies (22) is uniquely determined up to an
additive constant.
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e Using the ideas of the proof of the theorem, we can prove

Theorem 7. A(0), 0 € (—o0,0), is a C* function. Moreover, A’ (0) has an expression

A'(6) = / Va(@)dpo (@)
- /Rn 2—;2’)/5_1’Y*Vw9 - Vwg(x)dpg (),

where g IS the invariant distribution of Lg.
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4  Proof of the main result

4.1 Upper bound

For 6 € (—00,0),
r T I
E[eefo f(Xt,ht)dt] 2 E[eefo F(X¢,he)dt : T/ f(Xt,ht)dt S k‘i|
0

>69M’P(l /Tf(X h)dt<k)
= T . ty 10t = .

1 I
m - X < )
Th_r)rloo T hei&g;m) logP(T/O f( Xy, hy)dt <k
T 1 0 [T f(X¢,he)dt
< lim = sup logFE|e"/o £Re)e — Ok
T—oo T he A(T;x)
= A(0) — Ok.

It follows that

1 1 [F
fm —  sup logP(—/ F(X,, h dtgk)g—fk.
T—oo 1" e A(T:x) T Jo (K o) (F)
07



4.2 Lower bound

Let A’(—o0) <k —e <k < A(0—). Since I(-) is continuous, it is enough to prove
that

1 1 [t
lim = sup logP(—/ F(X, hy)dt < k) > J(k—¢)—2.  (23)
T— 00 T he A(T;x) T 0

We can choose 0, = 0.(k,€) € (—00,0) such that
AN(b,) =k —e
Then, since A(-) is convex, we have, for any 6 € (—o0,0),
A(0) = A(6) + A(0.)(0 — 6.) = A(0) + (k —€)(6 — 0.).

Namely,
’ O.(k—¢)—A0,) >0(k—¢€)— AO).

Therefore
I(k—¢)=0,(k—¢€)—A0,) =0,\(0,) — AO,).
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The inequality (23) can be rewritten as

1 1 [t

im —  sup logP(—/ f(Xt,ht)dtgA’(e*)Jre) > A(6,) — .M (8,) — 2.
T— 00 he A(T;x) T 0
Let

hw) = =5~ (@) (77" (@) Vo(w) + g(x)
and Xt be the solution of the s.d.e.

dAXt = O(Xt)dBt + [50&5) + ’Y(Xt)il(j(t)}dt
Xo =2 € R™.

This is an optimal controlled process for the problem (18) with 8 = 0,. It is enough to

prove the inequality

1 R
lim —logP(—/ f(Xt,ht)dtgA’(H*)+e> > A(6,) — 6.A'(6,) — 2e.
T T J,

T — 00

Define a probability measure P by

APl T er VXl aB—} [T 1" Ve %0 dr.
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Then

A

t
Bt = Bt —|—/ O'*V”UJ(XS)dS
0

is a Brownian motion under P. The dynamics of X, can be rewritten as

dX, = o(X)dBy; + (B 4+ vh + 00" Vw)(X,)dt
— 0(X,)dB; + (G + Ng, Vw)(X,)dt.

Hence Xt is an Ly _-diffusion under P. Write

T
MT ::/ [U*Vw(Xt)]*dBta
0

and define events A;, 1 = 0,1, 2, by

Ag = {% /OTf(Xt,B(Xt))dt < A (0,) + e},

A

A = { — My > —ET},



Then

P(Ag) = EleMr—2()r . 4]
Z E[B_MT_%<M>T . A() M Al M AQ]
> e(A(Q*)—H*A/(9*)—26)Tp(A0 NA N AQ)
> lMO-0-N0)-20T (1 _ p(A5) - P(AT) — P(4S)).

We can prove that
Ci(e)
T

P(A%) < L i=0,1,2,
for some positive constants C;(¢) which depend on ¢ but are independent of T'. It
follows that

1
lim —log P(Ao) > A(6.) — 0. A'(6.) — 2e.

T — 00
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5 Conclusion and comments

e We can formulate a large deviation control problem and prove (a simple form of) a
large deviation principle (in a particular case).
e We can also prove

1 1 !
lim —1 P(-/ X, h dt<k):— inf  I(k).
Jup i ploe P o F(Xe hedt < pent T

(In this case the definition of A(x) is more complicated.)
e |t seems interesting to consider the problem of minimizing the probability

P(% /OTf(Xt,ht)dt > k:)

1 T
A(0) = lim —inflog E[e?Jo [(Xeh)dt]

T—oo 1 h

1

1 (T
3 — >kl ~— i I(K
Tl?bf logP(T /0 f( Xy, hy)dt > k:) k/el[rli{,:oo) (K",

I(k) = sup{kt — A(9)}.
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